Control of the UltraLITE Precision Deployable Test Article Using Adaptive Spatio-Temporal Filtering Based Control

Albert B. Bosse
Thomas D. Sharp
Stuart J. Shelley
Sheet Dynamics, Ltd.
Cincinnati, OH

Keith K. Denoyer
R. Scott Irwin
Air Force Research Laboratory
Kirtland Air Force Base
Overview

- UltraLITE Deployable Optical Telescope program
- DOT test beds
 - Mirror Mass Simulator
 - PDOS
 - DOT BGD
- Active structural control issues
- Spatio-Temporal Filtering (STF)
- STF based structural control
- PDOS test experience
• Phase II SBIR award from Ballistic Missile Defense Organization (BMDO)
• Contract managed by and technical collaboration with Air Force Research Lab - Kirtland AFB
- Large aperture/resolution through deployable, sparse, optical array
- Deployable primary mirrors
- Golay 6 configuration
- Telescoping secondary tower
• Mirror Mass Simulator (MMS)
• Precision Deployable Optics Structure (PDOS)
• Deployable Optical Telescope Brassboard Ground Demonstration (BGD)
Preliminary DOT Evaluation - Mirror Mass Simulator

- Mirror Mass Simulator mounted to optics bench
- 3 interferometer displacement sensors
- 3 piezo stack actuators
- Electromagnetic disturbance shaker
Precision Deployable Optical Structure

- Actuation Subsystem
- Optical Subsystem & Truth Sensor
- Mirror Simulator
- Deployable Boom
- Interface
- Granite Slab
Deployable Optical Telescope
Brassboard Ground Demonstration

Integrated Technology in Simulated Space/Ops Environment
Supporting SBL, Global Virtual Presence, and Tactical Imaging Missions
Requirements

SDL’s primary mission is to provide a Vibration Control System that will assist the Optical Control System in meeting the DOT mirror positioning requirements

- **Precision Deployable Optical Structure (PDOS):**
 Achieve 30 nanometers or less RMS value for relative displacement between the granite slab and the mirror mass simulator

- **Deployable Optical Telescope (DOT)**

 1. Maintain the position of the primary mirror segments within:
 - Piston: ± 14 nanometers error per segment
 - Tilt: ± 95 nanoradians error per segment

 2. Maintain the position of the secondary mirror within:
 - Decenter: ± 50 microns
 - Piston: ± 4 microns
 - Tilt: ± 20 microradians
Deployable Optics - Jitter Requirements

- Disturbances
 - torque wheel actuators
 - slewing
 - space based laser

- Vibration Control
 - isolation
 - passive vibration control
 - high bandwidth position control
 - active vibration control
Active Structural Vibration Control Issues

- **Modeling** - accurate and complete dynamic models of complex “real-world” systems are difficult to obtain.
- **Time Variance** - Often, by the time you’ve got the model the system has changed - It’s a moving target.
 - System dynamics - temperature, load, wear, damage
 - Discrete failures - sensors, actuators, signal conditioning
- **Computational burden**
Spatio-Temporal Filter Based Control

Uncontrolled Response

Uncontrolled Modal Responses Extracted with STF

Controlled Modal Responses

Controlled Response
Modal Coordinate Transformation
Uncouples System into SDOF Modes

\[M\ddot{x} + C\dot{x} + Kx = f \]

\[
\begin{bmatrix}
\ddots \\

m & \ddots \\

\vdots & \ddots & \ddots \\

\end{bmatrix}
\begin{bmatrix}
\ddots \\

\ddots & c \\

k & \ddots \\

\end{bmatrix}
\begin{bmatrix}
\ddots \\

\eta \dot{} \\

\eta \\

\end{bmatrix}
= \Phi^T f
\]

\[x(t) = \sum_{r=1}^{N} \phi_r \eta_r(t) = \Phi \eta(t) \]
STF Origin - Modal or Spatial Filtering

Spatial filter vector Ψ

$$\psi_i^T \phi_r = 0 \quad i \neq r$$

$$= 1 \quad i = r$$

$$\psi_i^T x(t) = \psi_i^T \sum_{r=1}^{N} [\phi_r \eta_r(t)]$$

$$= \psi_i^T \phi_i \eta_i(t)$$

$$= \eta_i(t)$$

Extract single mode response from measured response
Spatio-Temporal Filtering

Spatial filter estimate of η at time k

$$\hat{\eta}_k = \psi^T x_k$$

Spatio-Temporal filter estimate of η at time k

$$\hat{\eta}_k = \psi^T \begin{pmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_{k-Nt} \end{pmatrix}$$
• FIR or “all-zero” filter on each channel
• Pole-zero cancellation & preferential pass filter
 – fewer sensors required
• Inherent estimation of modal velocity
• Compensation for filter delays, sensor & signal conditioning dynamics
• Non-homogeneous sensor suites - piezo patches, accelerometers, etc.
• Know only poles of controlled modes
• Don’t know
 – mode shapes
 – modal scaling factors (modal mass)
 – modal participation vectors
 – anything about uncontrolled modes (not even poles)
Adaptive Calculation of STF Coefficients using Reference Model Approach

SDL

SDOF (Single Mode) Reference Model

\[\eta_{k+1}^{(r)} = z_{\lambda} \eta_{k}^{(r)} + l^T f_k \]

\[\eta_{k+1}^{(r1)} = z_{\lambda} \eta_{k}^{(r1)} + f_k^{(1)} \]

\[\vdots \]

\[\eta_{k+1}^{(rN_i)} = z_{\lambda} \eta_{k}^{(rN_i)} + f_k^{(N_i)} \]

\[\eta_{k}^{(r)} = l^T \begin{bmatrix} \eta_{k}^{(r1)} \\ \vdots \\ \eta_{k}^{(rN_i)} \end{bmatrix} + \eta_{k}^{r} = l^T \eta_k^{r} \]
Adaptive Calculation of STF Coefficients using Reference Model Approach

\[e_k = \eta_k^{(r)} - \hat{\eta}_k \]

\[= l^T \eta_k^r - \psi^T \begin{bmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_{k-Nto} \end{bmatrix} = \begin{bmatrix} \psi^T \\ l \end{bmatrix} \begin{bmatrix} -x_k \\ \vdots \\ -x_{k-Nto} \\ \eta_k^r \end{bmatrix} \]
STF Based Modal Velocity Feedback Control

Control Command Vector for i'th mode

$$f_c^{(i)} = \hat{\eta}^{(i)} \alpha^{(i)} v^{(i)}$$

Modal Coordinate Velocity Estimate

Force Vector

Scalar Feedback Gain

Estimated Modal Participation Vector is Ideal Force Vector
Initial Mirror Mass Simulator Control Experiments

- STF based velocity feedback
- 3 inputs, 3 outputs, 5 controlled modes
- Random disturbance excitation
- 1 1/2 days to implement
 - familiarization with test bed
 - all system ID
 - control implementation and testing
Implementation of STF Based Control
Preliminary DOT Evaluation - Mirror Mass Simulator

- Mirror Mass Simulator mounted to optics bench
- 3 interferometer displacement sensors
- 3 piezo stack actuators
- Electromagnetic disturbance shaker
Interferometer 1 versus Disturbance Force

Amplitude - Displacement/Force vs Frequency - Hertz
Interferometer 2 versus Disturbance Force

Amplitude – Displacement/Force

Frequency - Hertz
Interferometer 3 versus Disturbance Force

Frequency - Hertz

Amplitude - Displacement/Force
Precision Deployable Optical Structure

- Back-Up Structure
- Gravity Off-Load
- Mirror Inertial Simulator
- Reference Bench
- Composite Boom

Proved Deployment, Acquisition, Maintenance and Control System for a 2m Optical Segment
Precision Deployable Optical Structure
Interferometer 1 / PZT 2 FRF

- 5 Hertz boom mode only mode in low frequency range
- 1.6 Hertz slab mode not apparent - must treat as a disturbance
STF Control
PDOS 5 Hz Boom Mode
Open and Closed Loop Interferometer PSD’s

![Graph of Open and Closed Loop Interferometer PSD’s](image)
• RMS Vibration, 0-250 Hz
 • Int 1: 171-430 nm
 • Int 2: 117-264 nm
 • Int 2: 93-239 nm
• Resonant and forced vibration
Interferometer RMS Value Versus Frequency Band

![Graph showing Interferometer RMS Value vs Frequency Band](image)
• RMS Vibration, 0-250 Hz
• Assuming 50x reduction 0-13 Hz.
 • Int 1: 29.99 nm
 • Int 2: 28.51 nm
 • Int 3: 27.42 nm

• Note the control objective is 30 nm RMS vibration levels
Conclusions

- Resonant control alone is not sufficient to meet PDOS/DOT optical jitter control requirements
- “High” bandwidth position control in conjunction with resonant mode control required
- STF based modal control is practical approach for resonant mode control;
 - Implement effective MIMO control on complex, “real-world” structures with little knowledge of dynamics
 - Adapts to sensor/actuator failure
 - Accommodates filter/signal conditioning dynamics
 - Easily updated to accommodate changing system dynamics (only update poles of controlled modes)